Synthesis of β -(1 \rightarrow 6)-Branched (1 \rightarrow 3)-Glucononaoside with Alternate β - and α -Bonds in the Backbone

WU, Zi-Cheng(吴自成) NING, Jun(宁君) KONG, Fan-Zuo*(孔繁祚)

Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China

Lauryl glycoside of β -D-Glcp ($1 \rightarrow 3$)[β -D-Glcp ($1 \rightarrow 6$)] α -D-Glcp ($1 \rightarrow 3$) β -D-Glcp ($1 \rightarrow 3$)[β -D-Glcp ($1 \rightarrow 6$)] α -D-Glcp ($1 \rightarrow 6$)] β -D-Glcp ($1 \rightarrow 6$)] β -D-Glcp was synthesized through 3+3+3 strategy. 3-O-Allyl-2 A 6-tri-O-benzoyl- β -D-glucopyranosyl-($1 \rightarrow 3$)[2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-($1 \rightarrow 6$)]1 2-O-isopropylidene- α -D-glucofuranose was used as the key intermediate which was converted to the corresponding trisaccharide donor and acceptor readily.

Keywords oligosaccharide, synthesis, glucose

Introduction

As part of an ongoing project for studying and developing new immunoboosting reagents, the heptasaccharide¹ repeating unit of lentinan and its anologues² and the pentasaccharide fragments³ of Epicoccum nigrum Ehrenb. ex Schlecht have been synthesized. It was interesting to find that not only the heptasaccharide shows strong antitumor activity as we expected , but also a glucohexaose , β -D- $Glcp(1\rightarrow 3)[\beta-D-Glcp(1\rightarrow 6)]\alpha-D-Glcp(1\rightarrow 3)\beta$ D-Glcp (1 \rightarrow 3)[β -D-Glcp (1 \rightarrow 6)]D-Glcp , has good immunoregulating activity. 2 Bioassay showed that in combination with the chemotherapeutic agent cyclophosphamide (CPA), the glucohexaose at a dose of 0.5 mg/kg to 1 mg/kg substantially increased the inhibition of S₁₈₀ for CPA, but decreased the toxicity caused by CPA. It was noted that this hexasaccharide was not fully β -linked like the repeating unit of letinan⁴ but contained one α -likage between the two trisaccharide moieties. For a detailed study on the action mechanism of the glucose hexasaccharide, a variety of model compounds was needed. Herein the synthesis of a glucononaose containing three trisaccharide units was presented.

Results and discussion

As shown in Scheme 1 , trisaccharide **6** obtained by condensation of 3-O-allyl-2 \mathcal{A} \mathcal{B} -tri-O-benzoyl- α -D-gluco-

pyranosyl trichloroacetimidate (1) with diacetone glucofuranose followed by selective removal of 5,6-0-isopropylidene group and then coupling with perbenzovlated glucopyranosyl trichloroacetimidate, was used as the key intermediate since it could transform to a trisaccharide donor 7 and acceptor 9 readily. Hydrolysis to remove 1 ,2-0-isopropylidene of 6 was accompanied by ring expansion, subsequent acetylation with acetic anhydride, selective 1-0deacetylation in a solution of benzylamine in THF, and then trichloroacetimidation with trichloroacetonitrile in the presence of K₂CO₃ afforded the trisaccharide donor 7. Reaction of 7 with lauryl alcohol promoted by catalytic TM-SOTf gave trisaccharide 8 and deallylation with PdCl₂⁷ furnished the trisaccharide acceptor 9. Condensation of donor 7 with acceptor 9 yielded hexasaccharide 10 in satisfactory yield (73.2%) with an α -bond^{2,5} between the two trisaccharide moieties as indicated from the 13 C NMR spectral data showing C-1 signals at δ 101.1, 101.0, 100.8, 100.4 and 100.2 for β bonds with $J_{C1 \text{ H}1}$ 163.0—164.8 Hz , and δ 93.1 for α bond with $J_{\text{Cl.H1}}$ 174.2 Hz , respectively. Deallylation of 10 gave the hexasaccharide acceptor 11, and subsequent coupling with the trisaccharide donor 128 readily afforded the nonasaccharide 13 (64.8%) that also showed an α -linkage between the trisaccharide and the hexasaccharide as indicated from the NMR data (2α -C-1 at δ 93.7 and 93.3). Finally , deacylation of **13** in a saturated solution of ammonia in methanol gave the target glucononaoside 14 in high yield (89.6%). The ¹H NMR and ¹³C NMR data of **14** showed all of the characteristic signals including 2α H-1 at δ 5.22 and 5.19, 7β C-1 at δ 102.9, 102.8, 102.7, 102.7, 102.6, 102.5 and 102.3 and 2α C-1 at δ 99.1 and 99.1, respectively. Bioactivity test of **14** is in progress and the results will be reported in due course.

In summary , a concise and efficient method for construction of β ($1 \rightarrow 6$)-branched ($1 \rightarrow 3$)-linked glucononaose with alternate β - and α -linkages in the backbone was achieved using trisaccharide as the building block. This method will be suitable for synthesis of high oligosaccharides of similar structure .

^{*} E-mail: fzkong@mail.rcees.ac.cn; Tel.: 86-10-62936613; Fax: 86-10-62923563

Received May 6, 2003; revised July 18, 2003; accepted August 25, 2003.

Project supported by Chinese Academy of Sciences (No. KZCX3-J-08) and the National Natural Science Foundation of China (Nos. 30070185 and 39970864).

Scheme 1

Reagents and conditions: (a) TMSOTf, CH_2Cl_2 , room temperature, 3 h; (b) 90% HOAc, 40 °C, 24 h; (c) (i) 90% CF_3COOH , 2 h; (ii) Ac_2O -Pyridine, room temperature, 2 h; (iii) THF, benzyl amine, room temperature, 5 h; (iv) Cl_3CCN , K_2CO_3 , CH_2Cl_2 , 8 h; (d) $PdCl_2$ in CH_2Cl_2 - CH_3OH , room temperature, 3 h; (e) saturated $NH_3/MeOH$, room temperature, 7 d.

Experimental

General methods

Melting points were determined with a "Mel-Temp" apparatus. Optical rotations were determined with a

Perkin-Elmer model 241-MC automatic polarimeter for solutions in a 1-dm jacketed cell. ¹H NMR , ¹³C NMR and 2D NMR spectra were recorded with Varian XL-400 spectrometers for solutions in CDCl₃ or in D₂O as indicated. Chemical shifts are expressed downfield from the Me₄Si absorption. Mass spectra were recorded with a VG PLAT-

FORM mass spectrometer using the ESI mode. Thin-layer chromatography (TLC) was performed on silica gel HF with detection by charring with sulfuric acid (30%, V/V) in methanol or by UV detection. Column chromatography was conducted by elution of a column (8 mm \times 100 mm, $16 \text{ mm} \times 240 \text{ mm}$, $18 \text{ mm} \times 300 \text{ mm}$, $35 \text{ mm} \times 400 \text{ mm}$) of silica gel (100—200 mesh) with EtOAc/petroleum ether (b.p. 60—90 °C) as the eluent. Analytical LC was performed with a Gilson HPLC consisting of a pump (model 306), stainless steel column packed with silica gel (Spherisorb SiO_2 , 10 mm \times 300 mm or 4.6 mm \times 250 mm), differential refractometer (132-RI Detector), UV/ vis detector (model 118). EtOAc-petroleum ether (b.p. 60-90 °C) was used as the eluent at a flow rate of 1-4mL/min. Solutions were concentrated at a temperature < 60 °C under diminished pressure.

3-O-Allyl-2 A β -tri-O-benzoyl- α -D-glucopyranosyl trichloroacetimidate (1)(5.0 g, 7.40 mmol) and 1,25, 6-di-O-isopropylidene- α -D-glucofuranose (2) (1.75 g, 6.73 mmol) were dried together under high vacuum for 2 h, then dissolved in anhydrous CH₂Cl₂(120 mL). TM-SOTf (50.0 μ L, 0.435 mmol) was added dropwise at -20° C with N₂ protection. The reaction mixture was stirred for 3 h, and the temperature was gradually raised to ambient temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture, followed by purification on a silica gel column with petroleum ether-EtOAc (3:1, V/V) as the eluent gave the disaccharide (3)(4.14 g , 79.5%) as a syrup. To a solution of 90% HOAc (50 mL) was added 3 (4.00 g, 5.17 mmol), and the mixture was stirred at 40 °C overnight, then concentrated to dryness. The residue was passed through a short silica column [petroleum ether-EtOAc (1:1 , V/V)] to give 4(3.56 g, 94%) as a foamy solid. Compound 6 was prepared by coupling of 5 (3.30 g, 4.34 mmol) with 4 (3.50 g, 4.77 mmol) under the same conditions as described for the synthesis of 3 by coupling of 1 with 2. Concentration of the reaction mixture followed by purification on a silica gel column with petroleum ether-EtOAc 2:1, (V/V) as the eluent gave the product **6** (4.34 g), 76.2%) as a syrup : [α]₀ + 25 (c 1.0 , CHCl₃); ¹H NMR (CDCl₃ , 400 MHz) δ : 8.16—7.30 (m , 35H , 7Bz-**H**), 5.97 (dd , $J_{3A} = J_{45} = 9.6$ Hz , ¹H , H-4), 5.77 (dd , $J_{3A} = J_{45} = 9.7 \text{ Hz}$, 1H , H-4) , 5.66—5.63 (m , 1H , $CH_2 = C\mathbf{H}CH_2O$) , 5.62 (dd , $J_{1,2} = 7.9$ Hz , $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 5.54 (dd, $J_{2,3} = J_{3,4} = 9.7$ Hz, 1H, H-3), 5.51 (d, $J_{1,2} = 3.6$ Hz, 1H, H-1), 5.33 (dd, $J_{1,2} = J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 5.16—5.12 (m, 1H, $C\mathbf{H}_2 = CHCH_2O$), 5.06 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 5.05—5.03 (m, 1H), 4.87 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.79–4.73 (m, 2H), 4.55 (dd, $J_{5,6}$ = 4.9 Hz , $J_{6.6}$ = 12.2 Hz , 1H , H-6) , 4.40—4.36 (m , 2H), 4.26 (d , J = 3.6 Hz , 1H), 4.21—4.04 (m , 8H), 3.90—3.87 (m , 1H), 1.33 , 1.07 (s , 6H , 2CH $_3$); 13 C NMR (CDCl $_3$, 100 MHz): δ : 166.1 , 165.7 , 165.1 , 165.1 , 164.4 (7C , 7COPh), 104.9 , 101.4 , 100.9 ($C-1^{1-111}$), 82.9 , 82.4 , 79.1 , 78.9 , 73.0 , 73.0 , 72.6 , 72.0 , 71.9 , 71.3 , 70.5 , 69.6 (C-2 , 3 , 4 , 5 , 6^{1-111}) , 26.5 , 25.8 (2C , 2COCH $_3$). Anal. calcd for $C_{73}H_{68}O_{23}$: C 66.77 , H 5.18 ; found C 67.02 , H 5.28.

3-O-Allyl-2 A β-tri-O-benzoyl-β-D-glucopyranosyl-(1→3)-[2 3 A β-tetra-O-benzoyl-β-D-glucopyranosyl-(1→6)-]2 Adi-O-acetyl-α-D-glucopyranosyl trichloroacetimidate (7)

A solution of 6(3 g, 2.15 mmol) in 90% CF₃COOH (20 mL) was stirred for 2 h at room temperature, then concentrated to dryness. The residue was dissolved in pyridine (30 mL), and then Ac_2O (6 mL) was added. After stirring the mixture at room temperature for 12 h, TLC [petroleum-EtOAc (2:1 , V/V)] indicted that the reaction was completed. The reaction mixture was extracted with CH₂Cl₂(50 mL), washed with dilute HCl and saturated aqueous NaHCO₃. The organic phase was dried over anhydrous Na₂SO₄, then concentrated to dryness. Purification by silica column chromatography [petroleum ether-EtOAc (2:1, V/V)] gave 3-0-allyl-2,4,6-tri-0-benzoyl-β-D-glucopyranosyl (1 \rightarrow 3) [2, 3, 4, 6-tetra-O-benzoyl-β-D-glucopyranosyl(1→6)-]1,2,4-di-O-acetyl-Dglucopyranose (2.8 g, 88.1% for two steps) as a syrup, which was dissolved in THF (30 mL), and then benzyl amine (1 mL) was added. The mixture was stirred at room temperature until TLC [petroleum-EtOAc (2:1 , V/V)] indicted that the reaction was complete. The mixture was extracted with CH₂Cl₂ (50 mL), washed with dilute HCl and saturated aqueous NaHCO₃. The organic phase was dried over anhydrous Na2SO4, then concentrated to dry-Purification by silica column chromatography [petroleum ether-EtOAc (2:1, V/V)] gave 3-O-allyl-2, 4 β -tri-O-benzoyl- β -D-glucopyranosyl (1 \rightarrow 3) [2,3,4,6tetra-O-benzoyl- β -D-glucopyranosyl (1 \rightarrow 6) 2, 4-di-Oacetyl-D-glucopyranose (2 g , 73.5%) as a syrup. The hemiacetal was dissolved in CH₂Cl₂ (20 mL), then CCl_3CN (0.1 mL, 2 mmol) and K_2CO_3 (1 g, 7 mmol) was added. The reaction mixture was stirred for 10 h, at the end of time TLC [petroleum ether-EtOAc (3:1 , V/V)] indicted that the reaction was complete. The mixture was filtered, and the filtrate was concentrated. The residue was purified by flash chromatography [petroleum ether-EtOAc(3:1, V/V)] to give 7(2g, 92.1%) as a syrup: [α]₀ + 18 (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ :8.31(s,1H,C=NH),8.06—7.24(m,35H,7Bz-**H**), 6.19(d, $J_{1,2}$ = 3.6 Hz, 1H, H-1), 5.86(dd, $J_{3,4}$ $= J_{4.5} = 9.7 \text{ Hz}$, 1H, H-4), 5.62 (dd, $J_{3.4} = J_{4.5} = 9.7$ Hz, 1H, H-4), 5.57—5.49(m, 1H, $CH_2 = CHCH_2O$), 5.46 (dd , $J_{1\,2}$ = 7.9 Hz , $J_{2\,3}$ = 9.7 Hz , 1H , H-2) , $5.42 \text{ (dd , } J_{2.3} = J_{3.4} = 9.7 \text{ Hz , 1H , H-3), } 5.18 \text{ (dd , }$ $J_{1,2} = 7.9 \text{ Hz}$, $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 5.02—4.98

(m , 1H , CH $_2$ = CHCH $_2\mathrm{O}$) , 4.98 (d , $J_{1\,2}$ = 7.9 Hz , 1H, H-1), 4.91—4.89 (m, 1H), 4.85 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.82 (dd, $J_{2,3} = J_{3,4} = 9.4$ Hz, 1H, H-3), 4.65—4.57 (m , 2H), 4.46 (dd , $J_{5,6}$ = 6.4 Hz , $J_{6,6} = 12.1 \text{ Hz}$, 1H, H-6), 4.32 (dd, $J_{5,6} = 6.4 \text{ Hz}$, $J_{6.6} = 12.1 \text{ Hz}$, 1H, H-6), 4.16-4.07 (m, 2H), 4.05-3.99 (m, 5H), 3.94-3.89 (m, 1H), 3.68 (dd , $J_{5.6} = 6.4 \text{ Hz}$, $J_{6.6} = 12.1 \text{ Hz}$, 1H , H-6) , 1.92 , 1.82 (s , 6H , 2CH₃C = 0); 13 C NMR (CDCl₃ , 100 MHz) δ : 169.3, 168.9(2C, 2COCH₃), 166.1, 166.0, 165.6, 165.1, 165.0, 164.9, 164.6 (7C, 7COPh), 101.0, 100.5, 92.4 (C-1^{I-III}), 79.4, 75.7, 73.0, 72.9, 72.9, 72.7, 72.7, 72.1, 72.0, 71.9, 71.8, 71.7,71.0,69.7,67.7,67.5,63.3,62.9 (C-2,3, 4,5,6). Anal. calcd for C₇₆H₆₈Cl₃NO₂₅: C 60.78, H 4.53; found C 61.02, H 4.61.

Lauryl 3-O-allyl-2 \mathcal{A} , \mathcal{G} -tri-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \mathcal{D} \mathcal{A} -di-O-acetyl- β -D-glucopyranoside (8)

Compound 7 (5 g, 3.33 mmol) and lauryl alcohol (0.74 g, 3.97 mmol) were dried together under high vacuum for 2 h, then dissolved in anhydrous CH₂Cl₂(50 mL). TMSOTf (50 μ L, 0.044 mmol) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, and the temperature was gradually raised to ambient temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture, followed by purification on a silica gel column with petroleum ether-EtOAc (1:1, V/V) as the eluent gave the product 8 (4.37 g, 86.2%) as a syrup: $[\alpha]_0 + 10(c 1.0)$ CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ : 8.09—7.22 (m , 35H , 7Bz-**H**) , 5.96 (dd , $J_{3A} = J_{45} = 9.6$ Hz , 1H, H-4), 5.75 (dd, $J_{3,4} = J_{4,5} = 9.7$ Hz, 1H, H-4), 5.64-5.60 (m , 1H , $CH_2 = CHCH_2O$) , 5.58 (dd , $J_{1,2} = 7.9 \text{ Hz}$, $J_{2,3} = 10.1 \text{ Hz}$, 1H, H-2), 5.53 (dd, $J_{2,3} = J_{3,4} = 9.7 \text{ Hz}$, 1H, H-3), 5.21 (dd, $J_{1,2} = 7.9$ Hz, $J_{2,3} = 9.7$ Hz, 1H, H-2), 5.11—5.06 (m, 1H, $CH_2 = CHCH_2O$), 5.01 (d, $J_{1,2} = 7.9 Hz$, 1H, H-1), 5.00–4.97 (m, 1H), 4.91 (d, $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.85 (dd , $J_{1,2}$ = 7.9 Hz , $J_{2,3}$ = 9.4 Hz , 1H , H-2), 4.81 (dd , $J_{2,3} = J_{3,4} = 9.7 \; \text{Hz}$, 1H , H-3) , 4.76—4.64 (m , 2H) , 4.56 (dd , $J_{5,6}$ = 6.4 Hz , $J_{6,6}$ = 12.1 Hz , 1H, H-6), 4.50 (dd, $J_{5,6} = 6.4$ Hz, $J_{6,6} = 12.1$ Hz, 1H , H-6) , 4.26—4.20 (m , 1H , H-5) , 4.14 (d , $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.12—4.02 (m, 4H), 3.97 (dd , $J_{5,6} = 2.6 \text{ Hz}$, $J_{6,6} = 12.9 \text{ Hz}$, 1H , H-6) , 3.92 (dd , $J_{3A} = J_{45} = 9.7 \text{ Hz}$, 1H , H-4) , 3.77—3.70 (m , 1H), 3.60—3.55 (m, 1H), 3.52—3.46 (m, 1H), 3.03 - 3.00 (m, 1H), 2.00, 1.98 (s, 6H, 2CH₃CO),1.40—1.14(m, 20 H), 0.99(dd, J = 6.8 Hz, J = 7.0Hz , 3H); 13 C NMR (CDCl $_3$, 100 MHz) δ : 169.5 , 168.0 (2C, 2COCH₃), 166.1, 166.0, 165.6, 165.1, 165.0, 164.9, 164.8 (7C, 7COPh), 101.1, 100.6, 100.4(C-1^{I-III}),79.6,76.8,73.5,72.9,72.7,72.6, 72.2 , 71.9 , 71.8 , 69.4 , 69.2 , 68.7 , 67.7 , 67.5 , 63.3 ,62.9 (C-2 , 3 , 4 , 5 , 6 li-III) , 29.6 , 29.6 , 29.5 , 29.4 , 29.2 , 29.1 , 25.7 , 22.6 , 20.7 , 20.5 (lauryl). Anal. calcd for $C_{86}H_{92}O_{25}$: C 67.72 , H 6.04 ; found C 67.99 , H 6.12.

Lauryl 2 ,4 ,6-tri-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)-] 2 β -di-O-acetyl- β -D-glucopyranoside (9)

To a solution of **8** (2 g , 1.31 mmol) in MeOH (30 mL) was added PdCl2 (150 mg). After stirring for 3 h at room temperature , TLC [petroleum ether-EtOAc (1.5:1 , V/V)] indicated that the reaction was complete. The mixture was filtered and the solution was concentrated to dryness, and the resultant residue was purified by flash chromatography [petroleum ether-EtOAc(1:1, V/V)] to give **9** (1.7 g, 87.6%) as a syrup: $[\alpha]_0 - 1.5$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ : 7.95—7.19 (m , 35H , 7Bz-**H**) , 5.79 (dd , $J_{3A} = J_{45} = 9.7$ Hz , 1H, H-4), 5.58 (dd, $J_{3A} = J_{45} = 9.7$ Hz, 1H, H-4), 5.42 (dd , $J_{1,2}$ = 7.9 Hz , $J_{2,3}$ = 9.7 Hz , 1H , H-2) , 5.29 (dd , $J_{2,3} = J_{3,4} = 9.7 \; \mathrm{Hz}$, 1H , H-3) , 4.93 (dd , $J_{1,2} = 7.9 \text{ Hz}$, $J_{2,3} = 9.7 \text{ Hz}$, 1H , H-2) , 4.82 (d , $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.76(d, $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.75—4.73 (m, 1H), 4.62 (dd, $J_{1,2}$ = 7.9 Hz, $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 4.57—4.52 (m, 2H), 4.40—4.34(m , 2H) , 4.06—4.02(m , 2H) , 4.00(d , $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 3.82—3.77 (m, 2H), 3.56—3.51(m , 1H) , 3.42—3.40(m , 1H) , 3.34— 3.32(m,1H),2.92—2.86(m,1H),1.90,1.81(s, 6 H , 2CH₃CO) , 1.21—1.06 (m , 20 H) , 0.81 (dd , J = 6.8 Hz, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 169.5, 168.3(2C, 2COCH₃), 166.6, 166.0, 166.0, 165.8, 165.6, 165.1, 165.0 (7C, 7COPh), 101.1 , 100.4 , 100.2 ($C-1^{I-III}$) , 77.8 , 75.2 , 74.1 , 73.5, 72.8, 72.7, 72.2, 71.7, 71.7, 69.4, 69.3, 68.8,63.1,62.9 (C-2,3,4,5,6),31.8,29.6, 29.6, 29.3, 29.2, 29.1, 25.7, 22.6, 20.8, 20.5, 14.1 (lauryl). Anal. calcd for $C_{83}H_{88}O_{25}$: C, 67.12; H, 5.93; found C, 67.36; H, 5.85.

Lauryl 3-O-allyl-2 \mathcal{A} , 6-tri-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-O-benzoyl- α -D-glucopyranosyl-(1 \rightarrow 3)- \mathcal{D} , \mathcal{A} -di-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \mathcal{D} \mathcal{A} -di-O-acetyl- β -D-glucopyranoside (10)

Compound 7 (1.34 g , 0.893 mmol) and 9 (1.20 g , 0.809 mmol) were dried together under high vacuum for 2 h , then dissolved in anhydrous CH_2Cl_2 (10 mL). TMSOTf (40 μ L , 0.352 mmol) was added dropwise at -20 °C with N_2 protection. The reaction mixture was stirred for 3 h , and the temperature was gradually raised to ambient temperature. Then the mixture was neutralized with Et_3N .

Concentration of the reaction mixture, followed by purification on a silica gel column with petroleum ether-EtOAc (1:1, V/V) as the eluent gave the product ${f 10}$ (1.67 g, 73.2%) as a syrup : [α]₀ + 25 (c 1.0, CHCl₃); ¹H NMR (CDCl $_3$, 400 MHz) δ : 8.17—7.14 (m , 70H , 14Bz-**H**), 5.96 (dd , $J_{3A} = J_{45} = 9.7$ Hz , 1H , H-4), 5.88 (dd , $J_{3A} = J_{45} = 9.7 \text{ Hz}$, 1H , H-4) , 5.69—5.66 (m, 1H, $CH_2 = CHCH_2O$), 5.62 (dd, $J_{1,2} = 7.9 Hz$, $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 5.55—5.49 (m, 5H), 5.38 $(dd, J_{2,3} = J_{3,4} = 9.7 \text{ Hz}, 1H, H-3), 5.32 (dd, J_{2,3} =$ $J_{3A} = 9.47 \text{ Hz}$, 1H, H-3), 5.02 (dd, $J_{12} = 7.9 \text{ Hz}$, $J_{2.3} = 9.7 \text{ Hz}$, 1H, H-2), 4.98(d, $J_{1.2} = 7.9 \text{ Hz}$, 1H, H-1), 4.96(d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.95—4.93 (m , 2H) , 4.90 (d , $J_{1,2}$ = 3.2 Hz , 1H , H-1) , 4.83— 4.75 (m , 4H) , 4.72 (d , $J_{1,2} = 7.9$ Hz , 1H , H-1) , 4.65—4.62(m, 3H), 4.56—4.39(m, 5H), 4.37— 4.32 (m , 2H) , 4.30 (d , $J_{1,2} = 7.9$ Hz , 1H , H-1) , 4.17-4.14 (m, 3H), 4.07 (d, $J_{1,2} = 7.9$ Hz, 1H, H_{-} 1), 4.06—3.98 (m , 3H), 3.94—3.80 (m , 7H), 3.66-3.62 (m, 2H), 3.52-3.50 (m, 1H), 3.42-3.40(m, 1H), 3.31-3.24(m, 1H), 2.97-2.94(m, 1H)1H), 2.25, 1.93, 1.85, 1.04 (s, 12H, 4CH₃CO), 1.26—1.14(m, 20H), 0.85(dd, J = 6.8 Hz, J = 7.0Hz , 3H); 13 C NMR (CDCl₃ , 100 MHz) δ : 169.6 , 169.5, 169.0, 167.6 (4C, 4COCH₃), 166.1, 166.0, 166.0, 166.0, 165.6, 165.5, 165.3, 165.1, 165.0, 165.0, 164.9, 164.7, 164.6, 164.5 (14C, 14COPh), 101.1, 101.0, 100.8, 100.4, 100.1, 93.1 (C-1^{I-VI}), 79.8, 76.8, 73.7, 73.7, 73.2, 73.0, 72.9, 72.9, 72.8, 72.8, 72.7, 72.6, 72.5, 72.2, 72.0, 71.9, 71.8,69.6,69.2,68.7,67.7,67.5,63.3,63.0 (C-2,3,4,5,6^{I-VI}),31.8,29.6,29.6,29.5,29.3, 29.2, 25.8, 22.5, 21.0, 20.6, 20.3, 19.7, 14.0 (lauryl). Anal. calcd for $C_{157}H_{154}O_{49} \div C$ 66.76 , H 5.46 ; found C 67.01, H 5.56.

Lauryl 2 ,4 ,6-tri-O-benzoyl-β-D-glucopyranosyl-($1\rightarrow 3$)- [2 ,3 ,4 ,6-tetra-O-benzoyl-β-D-glucopyranosyl-($1\rightarrow 6$)-] 2 A-di-O-acetyl-α-D-glucopyranosyl-($1\rightarrow 3$)-[2 ,3 ,4 ,6-tetra-O-benzoyl-β-D-glucopyranosyl-($1\rightarrow 3$)-[2 ,3 ,4 ,6-tetra-O-benzoyl-β-D-glucopyranosyl-($1\rightarrow 6$)- 2 A-di-O-acetyl-β-D-glucopyranoside (11)

To a solution of **10**(2 g , 0.709 mmol) in MeOH(30 mL) was added PdCl₂(150 mg). After stirring for 3 h at room temperature , TLC [petroleum ether-EtOAc (1.5:1 , V/V)] indicated that the reaction was complete. The mixture was filtered and the solution was concentrated to dryness , and the resultant residue was purified by flash chromatography [petroleum ether-EtOAc (1:1 , V/V)] to give **11**(1.67 g , 84.5%) as a syrup : [α]₀ - 12 (c 1.0 , CHCl₃); ¹H NMR (CDCl₃ , 400 MHz) δ : 8.01—7.17 (m ,70H , 14Bz-**H**), 5.95 (dd , $J_{3\,A} = J_{4\,5} = 9.7$ Hz , 1H , H-4), 5.66 (dd , $J_{3\,A} = J_{4\,5} = 9.7$ Hz , 1H , H-4), 5.66 (dd , $J_{3\,A} = J_{4\,5} = 9.7$ Hz , 1H , H-4), 5.66 (dd , $J_{3\,A} = J_{4\,5} = 9.7$ Hz , 1H , H-4), 5.52 (dd , $J_{1\,2} = 7.9$

Hz , $J_{2,3} = 9.7$ Hz , 1H , H-2) , 5.50 (dd , $J_{1,2} = 7.9$ Hz, $J_{2,3} = 9.7$ Hz, 1H, H-2), 5.44 - 5.41 (m, 2H), 5.38 (dd , $J_{2,3} = J_{3,4} = 9.7 \text{ Hz}$, 1H , H-3) , 4.96 (dd , $J_{1,2} = 3.6 \text{ Hz}$, $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2, 4.93 (d, $J_{1\,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.89 (dd, $J_{1\,2} = 7.9 \text{ Hz}$, $J_{2,3} = 9.7 \text{ Hz}$, 1H, H-2), 4.79(d, $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.77 (d, $J_{1,2} = 3.6 \text{ Hz}$, 1H, H-1), 4.76—4.75 (m , 2H) , 4.64—4.57 (m , 4H) , 4.53—4.43 (m , 4H), 4.41 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.38 (d, $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.32—4.19 (m, 3H), 4.18-4.10 (m , 2H) , 4.08 (d , $J_{1,2} = 7.9$ Hz , 1H , H-1), 4.06—3.98 (m, 4H), 3.96—3.87 (m, 3H), 3.66—3.60(m, 2H), 3.52—3.48(m, 1H), 3.42— 3.38(m,1H),3.36—3.21(m,1H),2.96—2.92(m, 1H), 2.24, 1.92, 1.92, 1.04 (s, 12H, 4CH₃CO), 1.28-1.17 (m, 20H), 0.85 (dd, J = 6.8, 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz)δ: 169.5, 169.4, 169.1, 167.7 (4C, 4COCH₃), 166.3, 166.1, 166.0, 165.9, 165.8, 165.8, 165.6, 165.5, 165.3, 165.1, 165.0, 165.0, 164.7, 164.7 (14C, 14COPh), 101.1, 101.1, 100.5, 100.4, 100.1, 93.2 (6C-1), 79.8, 77.8, 75.3, 74.4, 73.9, 73.7, 72.8, 72.7, 72.5, 72.3, 72.2, 71.9, 71.7, 71.5, 71.0, 69.6, 69.3, 69.2,69.0,68.8,67.9,67.5,63.0,62.8(C-2,3, 4,5,6),31.8,29.6,29.6,29.5,29.3,29.2,25.8, 22.5, 20.8, 20.6, 20.4, 19.7, 14.0 (lauryl). Anal. calcd for C₁₅₄H₁₅₀O₄₉: C 66.43, H 5.39; found C 66.68, H 5.30.

Lauryl 2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \not{D} ,4-di-O-acetyl- α -D-glucopyranosyl-(1 \rightarrow 3)-[2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \not{D} ,4-di-O-acetyl- α -D-glucopyranosyl-(1 \rightarrow 6)- \not{D} ,4-di-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-[2 ,3 ,4 ,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \not{D} ,4-di-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 6)- \not{D} ,4-di-O-acetyl- β -D-glucopyranoside (13)

Compound **12** (406 mg , 0.259 mmol) and **11** (600 mg, 0.216 mmol) were dried together under high vacuum for 2 h, then dissolved in anhydrous $CH_2Cl_2(10 \text{ mL})$. TMSOTf (15 μ L , 0.132 mmol) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the temperature was gradually raised to ambient temperature. Then the mixture was neutralized with Et₃N. Concentration of the reaction mixture, followed by purification on a silica gel column with petroleum ether-EtOAc (1:1, V/V) as the eluent gave the product 13 (586 mg, 64.8%) as a syrup : $[\alpha]_0$ $+25(c 1.0, CHCl_3); {}^{1}H NMR (CDCl_3, 400 MHz) \delta$: 8.17—7.17 (m , 110H , 22Bz-**H**) , 5.97 (dd , $J_{3,4}$ = $J_{4.5} = 9.7 \text{ Hz}$, 1H, H-4), 5.93 (dd, $J_{3.4} = J_{4.5} = 9.7$ Hz, 1H, H-4), 5.85 (dd, $J_{3A} = J_{45} = 9.7$ Hz, 1H, H-4), 5.80 (dd , $J_{3A} = J_{45} = 9.7 \text{ Hz}$, 1H , H-4), 5.72 (dd, $J_{3A} = J_{45} = 9.6 \text{ Hz}$, 1H, H-4), 5.68—5.62 (m,

3H),5.57 (dd, $J_{1,2} = 7.8$ Hz, $J_{2,3} = 9.8$ Hz, 1H, H-2),5.53(dd, $J_{1,2}$ =7.8 Hz, $J_{2,3}$ =9.7 Hz,1H,H-2), 5.51-5.47 (m , 2H) , 5.40 (dd , $J_{2.3} = J_{3.4} = 9.7$ Hz , 1H, H-3), 5.35 (dd, $J_{2,3} = J_{3,4} = 9.7$ Hz, 1H, H-3), 5.23 (dd , $J_{1,2} = 7.9$ Hz , $J_{2,3} = 9.7$ Hz , 1H , H-2) , 5.19 (dd , $J_{1,2} = 7.9$ Hz , $J_{2,3} = 9.7$ Hz , 1H , H-2) , 4.96(d, $J_{1,2} = 7.9 \text{ Hz}$, 1H, H-1), 4.92(d, $J_{1,2} = 3.6$ Hz, 1H, H-1), 4.90 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.86 (d , $J_{1,2} = 7.9 \, \text{Hz}$, 1H , H-1) , 4.85—4.70 (m , 6H), 4.69 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.67—4.51 (m , 8H) , 4.46—4.37 (m , 4H) , 4.36—4.31 (m , 3H), 4.29—4.18 (m, 5H), 4.14 (d, $J_{1,2}$ = 7.9 Hz, 1H, H-1), 4.07 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1), 4.05— 4.00(m, 3H), 3.96-3.82(m, 6H), 3.76-3.73(m, 6H)1H), 3.63—3.58 (m, 2H), 3.51—3.38 (m, 3H), 3.28—3.16 (m, 2H), 2.97—2.94 (m, 1H), 2.26, 2.20, 2.04, 1.89, 1.75, 1.03 (s, 18H, 6CH₃CO), 1.26-1.07 (m , 20 H) , 0.84 (dd , J = 6.8 , 7.0 Hz , 3H); 13 C NMR (CDCl₃, 100 MHz) δ : 169.6, 169.4, 169.4, 169.1, 169.1, 167.7 (6C, 6COCH₃), 166.1, 166.1, 166.0, 166.0, 165.9, 165.9, 165.8, 165.8, 165.6, 165.5, 165.4, 165.1, 165.1, 165.0, 165.0, 164.9, 164.8, 164.8, 164.7, 164.6, 164.6, 164.5 (22C , 22**C**OPh), 101.4 , 101.3 , 101.1 , 100.8 , 100.5, 100.2, 99.9 (7C-1 for β bonds, $J_{\text{C-H}} = 163.0$ — 164.8 Hz), 93.7 , 93.3 (2C-1 for α bond , $J_{\text{C-H}}$ = 172.0, 174.6 Hz), 79.8, 74.1, 73.7, 73.3, 73.2, 73.1,72.8,72.7,72.5,72.4,72.3,72.2,72.1, 72.0, 71.9, 71.8, 71.7, 71.6, 71.0, 70.6, 69.6, 69.5, 69.4, 69.3, 69.1, 69.0, 68.9, 68.6, 68.4, 68.3, 68.2, 67.8, 67.5, 67.4, 63.2, 63.1, 62.9, 62.8, 60.3 (C-2, 3, 4, 5, 6), 31.8, 29.6, 29.6, 29.5, 29.3, 29.2, 25.8, 22.6, 21.0, 20.6, 20.4, 19.8, 14.1 (lauryl). Anal. calcd for $C_{232}H_{216}O_{74}$: C 66.54, H 5.16; found C 66.82, H 5.23.

Lauryl β -D-glucopyranosyl-($1 \rightarrow 3$)-[β -D-glucopyranosyl-($1 \rightarrow 6$)- $]\alpha$ -D-glucopyranosyl-($1 \rightarrow 3$)-[β -D-glucopyranosyl-($1 \rightarrow 6$)- $]\alpha$ -D-glucopyranosyl-($1 \rightarrow 3$)- $[\alpha$ -D-glucopyranosyl-($1 \rightarrow 3$)-[α -D-glucopyranosyl-($1 \rightarrow 6$)- $[\alpha$ -D-glu

Compound 13 (500 mg, 0.120 mmol) was dissolved

in a saturated solution of NH₃ in MeOH (10 mL). After a week at room temperature, the reaction mixture was concentrated, and the residue was purified by chromatography on Sephadex LH-20 (MeOH) to afford 14 (157 mg, 89.6%) as a foamy solid : [α]₀ + 18(c 1.0, H_2O); ¹H NMR ($D_2O_1, 400_1$ MHz) $\delta : 5.22$ (d , $J = 3.2_1$ Hz , 1H , H-1), 5.19 (d, J = 3.2 Hz, 1H, H-1), 4.68 (d, J =8.0 Hz , 1H , H-1) , 4.62 (d , J=8.0 Hz , 1H , H-1) , 4.40(d, J = 8.0 Hz, 1H, H-1), 4.36(d, J = 8.0 Hz,1H, H-1), 4.32 (d, J = 8.0 Hz, 1H, H-1), 4.11— 4.02 (m , 6H) , 3.83—3.07 (m , 52H) , 1.38—1.16 $(m, 20H), 0.82-0.78 (m, 3H); {}^{13}C NMR (D_2O, 100)$ MHz) δ : 102.9, 102.8, 102.7, 102.7, 102.6, 102.5, 102.3 (7C-1 for β bonds , $J_{\text{C-H}} = 163.0 - 164.3 \text{ Hz}$), 99.1,99.1 (2C-1 for α bond, $J_{\text{C-H}} = 174.1 \text{Hz}$) 81.8, 75.9, 75.8, 775.5, 73.4, 73.1, 72.1, 71.0, 70.6, 69.5, 69.5, 69.4, 69.3, 69.1, 69.0, 68.9, 68.6, 68.4,68.2,67.8,67.6 (C-2,3,4,5,6),31.7, 29.5 , 29.2 , 25.5 , 22.5 , 13.9 (lauryl). Anal. calcd for $C_{66}H_{116}O_{46}: C$ 48.18, H 7.06; found C 48.44, H 7.15. ESMS for $C_{66}H_{116}O_{46}$ 1645.6): 1667.9 [M + Na]⁺.

References

- 1 Yang, G.; Kong, F. Synlett 2000, 1423.
- 2 Ning, J.; Zhang, W.; Yi, Y.; Yang, G.; Wu, Z.; Yi, J.; Kong, F. Bioorg. Med. Chem. 2003, 11, 2193.
- 3 Zeng , Y. ; Zhang , W. ; Ning , J. ; Kong , F. Carbohydr . Res . 2002 , 337 , 2383.
- 4 (a) Norisue, T.; Yanaki, T.; Fujita, H. J. Polym. Sci. 1980, 18, 547;
 - (b) Kojima, T.; Tabata, K.; Itoh, W.; Yanaki, T. *Agric*. *Biol*. *Chem*. **1986**, *50*, 231.
- 5 Zeng, Y.; Ning, J.; Kong, F. Tetrahedron Lett. 2002, 3729.
- 6 Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21.
- 7 Ogawa , T. ; Yamamoto , H. *Carbohydr* . *Res* . **1985** , *137* ,
- 8 (a) Ning, J.; Yi, Y.; Kong, F. Tetrahedron Lett. 2002 5545;
 - (b) Ning, J.; Lin, B.; Lei, H.; Kong, F. J. Agric. Food Chem. 2003, 51, 987.

(E0305068 SONG, J. P.; DONG, H. Z.)